Copper
From Wikipedia, the free encyclopedia
Copper (pronounced
/ˈkɒpɚ/) is a
chemical element with the symbol
Cu (
Latin:
cuprum) and
atomic number 29. It is a
ductile metal with excellent
electrical conductivity. Copper is rather supple in its pure state and has a pinkish luster which is (beside
gold) unusual for metals, which are normally silvery white. It is used as a heat conductor, an electrical conductor, as a building material and as a constituent of various metal
alloys.
Copper is an essential trace nutrient to all high plants and animals. In animals, including humans, it is found primarily in the
bloodstream, as a
co-factor in various
enzymes and in copper-based
pigments. However, in sufficient amounts, copper can be poisonous and even fatal to organisms.
Copper has played a significant part in the history of mankind, which has used the easily accessible uncompounded metal for thousands of years. Evidence has been preserved from several early civilizations of the use of copper. In the Roman era, copper was principally mined on
Cyprus, hence the origin of the name of the metal as Cyprium, "metal of Cyprus", later shortened to Cuprum.
A number of countries, such as
Chile and the
United States, still have sizable reserves of the metal which are extracted through large open pit mines. However, like
tin, there may be insufficient reserves to sustain current rates of consumption. High demand relative to supply caused a price spike in the 2000s.
Copper has a significant presence as a decorative metal art. It can also be used as an anti-germ surface that can add to the anti-bacterial and antimicrobial features of buildings such as hospitals.
History
Copper Age
Copper, as
native copper, is one of the few metals to naturally occur as an un-compounded mineral. Copper was known to some of the oldest civilizations on record, and has a history of use that is at least 10,000 years old. No one knows exactly when copper was first discovered, but earliest estimates place this event around 9000 BC in the
Middle East. A copper pendant was found in what is now northern
Iraq that dates to 8700 BC. It is probable that gold and iron were the only metals used by humans before copper. By 5000 BC, there are signs of copper
smelting: the refining of copper from simple copper compounds such as
malachite or
azurite. Among archaeological sites in Anatolia,
Çatal Höyük (~6000 BC) features native copper artifacts and smelted lead beads, but no smelted copper.
(~5000 BC) had access to smelted copper but the oldest smelted copper artifact found (a copper chisel from the chalcolithic site of Prokuplje in Serbia) has pre-dated Can Hasan by 500 years. The smelting facilities in the Balkans appear to be more advanced than the Turkish forges found at a later date, so it is quite probable that copper smelting originated in the Balkans. Investment casting was realized in 4500-4000 BCE in Southeast Asia.
Copper smelting appears to have been developed independently in several parts of the world. In addition to its development in the Balkans by 5,500 BC, it was developed in China before 2800 BC, in the Andes around 2000 BC, in Central America around 600 AD, and in West Africa around 900 AD. Copper is found extensively in the
Indus Valley Civilization by the 3rd millennium BC. In Europe,
Ötzi the Iceman, a well-preserved male dated to 3300-3200 BC, was found with an axe tipped with copper that was 99.7% pure. High levels of
arsenic in his hair suggest he was involved in copper smelting. Over the course of centuries, experience with copper has assisted the development of other metals; for example, knowledge of copper smelting led to the discovery of
iron smelting.
In the Americas production in the
Old Copper Complex, located in present day Michigan and Wisconsin, was dated back to between 6000 to 3000 BC.
Bronze Age
Alloying to make brass or bronze was realized soon after the discovery of copper itself. There exist copper and
bronze artifacts from
Sumerian cities that date to 3000 BC, and
Egyptian artifacts of copper and copper-
tin alloys nearly as old. In one pyramid, a copper plumbing system was found that is 5000 years old. The Egyptians found that adding a small amount of tin made the metal easier to cast, so copper-tin (
bronze) alloys were found in Egypt almost as soon as copper was found. Very important sources of copper in the Levant were located in
Timna valley (Negev, now in southern Israel) and Faynan (biblical
Punon, Jordan).
By 2000 BC, Europe was using bronze. The use of
bronze became so pervasive in a certain era of civilization (approximately 2500 BC to 600 BC in Europe) that it has been named the
Bronze Age. The transitional period in certain regions between the preceding
Neolithic period and the Bronze Age is termed the
Chalcolithic ("copper-stone"), with some high-purity copper tools being used alongside stone tools.
Brass (copper-zinc) was known to the Greeks, but only became a significant supplement to bronze during the Roman empire.
In
alchemy the symbol for copper, perhaps a stylized mirror, was also the symbol for the goddess and planet
Venus.
During the Bronze Age, one copper mine at
Great Orme in North Wales, extended for a depth of 70 metres. At
Alderley Edge in
Cheshire, carbon dates have established mining at around 2280 to 1890 BC (at 95% probability).
Antiquity and Middle Ages
In Greek the metal was known by the name
chalkos (χαλκός). Copper was a very important resource for the Romans, Greeks and other ancient peoples. In Roman times, it became known as
aes Cyprium (
aes being the generic Latin term for copper alloys such as
bronze and other metals, and
Cyprium because so much of it was mined in
Cyprus). From this, the phrase was simplified to
cuprum and then eventually Anglicized into the English
copper. Copper was associated with the goddess
Aphrodite/
Venus in mythology and
alchemy, owing to its lustrous beauty, its ancient use in producing mirrors, and its association with
Cyprus, which was sacred to the goddess. In astrology alchemy the seven heavenly bodies known to the ancients were associated with seven metals also known in antiquity, and
Venus was assigned to copper.
Britain's first use of brass occurred some time around the 3rd - 2nd century B.C. In north America, copper mining began with marginal workings by Native Americans. Native copper is known to have been extracted from sites on
Isle Royale with primitive stone tools between 800 and 1600.
Copper metallurgy was flourishing in South America, particularly in Peru around the beginning of the first millennium AD. Copper technology proceeded at a much slower rate on other continents. Africa's major location for copper reserves is Zambia. Copper burial ornamentals dated from the 15th century have been uncovered, but the metal's commercial production did not start until the early 1900s. Australian copper artifacts exist, but they appear only after the arrival of the Europeans; the aboriginal culture apparently did not develop their own metallurgical abilities.
Crucial in the metallurgical and technological worlds, copper has also played an important cultural role, particularly in currency.
Romans in the 6th through 3rd centuries B.C. used copper lumps as money. At first, just the copper itself was valued, but gradually the shape and look of the copper became more important. Julius Caesar had his own coins, made from a copper-zinc alloy, while
Octavianus Augustus Caesar's) coins were made from Cu-Pb-Sn alloys.
The gates of the
Temple of Jerusalem used
Corinthian bronze made by depletion gilding. Corinthian bronze was most prevalent in Alexandria, where alchemy is thought to have begun. In ancient India (before 1000 B.C.), copper was used in the
holistic medical science
Ayurveda for surgical instruments and other medical equipment. Ancient Egyptians (~2400 B.C.) used copper for sterilizing wounds and drinking water, and as time passed, (~1500 B.C.) for headaches, burns, and itching.
Hippocrates (~400 B.C.) used copper to treat leg ulcers associated with varicose veins. Ancient Aztecs fought sore throats by gargling with copper mixtures.
Copper is also the part of many rich stories and legends, such as that of Iraq's
Baghdad Battery. Copper cylinders soldered to lead, which date back to 248 B.C. to 226 A.D, resemble a galvanic cell, leading people to believe this may have been the first battery. This claim has so far not been substantiated.
The Bible also refers to the importance of copper: "Men know how to mine silver and refine gold, to dig iron from the earth and melt copper from stone" (Job. 28:1-2).
Modern period
Throughout history, copper's use in art has extended far beyond currency.
Vannoccio Biringuccio,
Giorgio Vasari and
Benvenuto Cellini are three
Renaissance sculptors from the mid 1500s, notable for their work with bronze. From about 1560 to about 1775, thin sheets of copper were commonly used as a canvas for paintings. Silver plated copper was used in the pre-photograph known as the
daguerreotype. The
Statue of Liberty, dedicated on October 28, 1886, was constructed of copper thought to have come from French-owned mines in Norway.
Plating was a technology that began started in the mid 1600s in some areas. One common use for
copper plating, widespread in the 1700s, was the sheathing of ships' hulls.
Copper sheathing could be used to protect wooden hulled ships from algae, and from the shipworm "toredo". The ships of Christopher Columbus were among the earliest to have this protection.
In the early 1800s, it was discovered that copper
wire could be used as a conductor, but it wasn't until 1990 that copper, in oxide form, was discovered for use as a
superconducting material. The German scientist
Osann invented
powder metallurgy of copper in 1830 while determining the metal's atomic weight. Around then it was also discovered that the amount and type of alloying element (e.g. tin) would affect the tones of bells, allowing for a variety of rich sounds, leading to bell casting, another common use for copper and its alloys.
Flash smelting, which is still used today, was developed in Europe in order to make the smelting process more energy efficient. In 1908, in Outokumpu, Finland, a large deposit of copper ore was discovered, which eventually led to the development of flash smelting.
Copper has been pivotal in the economic and sociological worlds, notably disputes involving copper mines. The 1906 Cananea Strike in Mexico dealt with issues of work organization. The Teniente copper mine (1904-1951) raised political issues about capitalism and class structure. Japan's largest copper mine, the Ashio mine, was the site of a riot in 1907. The Arizona miners' strike of 1938 dealt with American labor issues including the "right to strike".
Characteristics
Copper exists as a
metallically bonded substance, allowing it to have a wide variety of metallic properties.
Copper is a reddish-colored
metal; it has its characteristic color because of its
band structure. In its liquefied state, a pure copper surface without ambient light appears somewhat greenish, a characteristic shared with gold. When liquid copper is in bright ambient light, it retains some of its pinkish luster.
Copper occupies the same family of the periodic table as
silver and
gold, since they each have one s-orbital electron on top of a filled
electron shell. This similarity in electron structure makes them similar in many characteristics. All have very high thermal and electrical conductivity, and all are malleable metals. Among pure metals at
room temperature, copper has the second highest
electrical and
thermal conductivity, after
silver.
Occurrence
Mechanical properties
A single crystal copper consists of a few micrometres of small crystals. In this form of crystal (c), the yield stress is high and crystal undergoes a large amount of elastic deformation before going into the plastic deformation region. The plastic deformation region has an unpredictable outcome. The stress level decreases significantly as necking begins to occur.
Polycrystal copper has many crystal of different geometries combined. The plastic deformation of polycrystal is similar to mild steel. Copper has a high ductility and will continue to elongate as stress is applied. It is very useful in copper wire drawing.
Numerous
copper alloys exist, many with important historical and contemporary uses.
Speculum metal and
bronze are alloys of copper and
tin.
Brass is an alloy of copper and
zinc.
Monel metal, also called
cupronickel, is an alloy of copper and
nickel. While the metal "bronze" usually refers to copper-tin alloys, it also is a generic term for any alloy of copper, such as
aluminium bronze, silicon bronze, and manganese bronze.
Electrical properties
At 60 M
mhos/m copper has the second highest electrical conductivity of any element after silver. This high value is due to virtually all the valence electrons (one per atom) taking part in conduction. The resulting
free electrons in the copper amounting to a huge charge density of 13.6x10
9 C/m
3. This high charge density is responsible for the rather slow
drift velocity of currents in copper cable (drift velocity may be calculated as the ratio of current density to charge density). For instance, at a current density of 5x10
6 A/m
2 (typically, the maximum current density present in household wiring and grid distribution) the drift velocity is just a little over ⅓ mm/s.
Corrosion
Pure water and air
Copper is a metal that does not react with water (H2O), but the oxygen of the air will react slowly at room temperature to form a layer of brown-black copper oxide on copper metal.
The
Pourbaix diagram for copper in pure water, perchloric acid or sodium It can be seen that copper in "pure" water is more noble than hydrogen. As a result it does not corrode in oxygen free water and the corrosion rate in oxygenated water is low. hydroxide
It is important to note that in contrast to the oxidation of iron by wet air that the layer formed by the reaction of air with copper has a protective effect against further corrosion. On old copper roofs a green layer of copper carbonate, called
verdigris, can often be seen. Another notable example of this is on the
Statue of Liberty.
In contact with other metals
Copper should not be in only mechanical contact with metals of different
electropotential (for example, a copper pipe joined to an
iron pipe), especially in the presence of moisture, as the completion of an electrical circuit (as through the common earth ground) will cause the juncture to act as an
electrochemical cell (as is a single cell of a
battery). The weak electrical currents themseves are harmless but the electrochemical reaction will cause the conversion of the iron to other compounds, eventually destroying the functionality of the union. This problem is usually solved in
plumbing by separating copper pipe from iron pipe with some non-conducting segment (usually plastic or rubber).
Sulfide media
Copper metal does react with
hydrogen sulfide- and
sulfide-containing solutions. A series of different copper sulfides can form on the surface of the copper metal.
Note that the copper sulfide area of the plot is very complex due to the existence of many different sulfides, a close up is also provided to make the graph more clear. It is clear that the copper is now able to corrode even without the need for oxygen as the copper is now less noble than
hydrogen. This can be observed in every day life when copper metal surfaces
tarnish after exposure to air which contains sulfur compounds.
Ammonia media
Copper does react with oxygen-containing ammonia solutions because the ammonia forms water-soluble copper complexes. The formation of these complexes causes the corrosion to become more thermodynamically favored than the corrosion of copper in an identical solution that does not contain the ammonia.
Chloride media
Copper does react with a combination of oxygen and hydrochloric acid to form a series of copper chlorides. It is interesting to note that if copper(II) chloride (green/blue) is boiled with copper metal (with little or no oxygen present) then white copper(I) chloride will be formed.
Germicidal effect
Copper is germicidal, via the
oligodynamic effect. For example, brass doorknobs disinfect themselves of many bacteria within a period of eight hours.
Antimicrobial properties of copper are effective against
MRSA,
Escherichia coli and other
pathogens. In colder temperature, longer time is required to kill bacteria.
Isotopes
Copper has 29 distinct
isotopes ranging in
atomic mass from 52 to 80. Two of these,
63Cu and
65Cu, are stable and occur naturally, with
63Cu comprising approximately 69% of naturally occurring copper.
The other 27 isotopes are
radioactive and do not occur naturally. The most stable of these is
67Cu with a
half-life of 61.83 hours. The least stable is
54Cu with a half-life of approximately 75 ns. Unstable copper isotopes with atomic masses below 63 tend to undergo
β+ decay, while isotopes with atomic masses above 65 tend to undergo
β− decay.
64Cu decays by both β
+ and β
−.
68Cu,
69Cu,
71Cu,
72Cu, and
76Cu each have one
metastable isomer.
70Cu has two isomers, making a total of 7 distinct isomers. The most stable of these is
68mCu with a half-life of 3.75 minutes. The least stable is
69mCu with a half-life of 360 ns.
Production
Copper output in 2005
World production trend
Evolution of the historical copper price
source :
minerals.usgs.gov (XLS)
Current price is at least four times higher than the 2002 value.
Output
In 2005, Chile was the top mine producer of copper with at least one-third world share followed by the USA, Indonesia and Peru, reports the
British Geological Survey.
The
Intergovernmental Council of Copper Exporting Countries (CIPEC), defunct since 1992, once tried to play a similar role for copper as
OPEC does for
oil, but never achieved the same influence, not least because the second-largest producer, the
United States, was never a member. Formed in 1967, its principal members were
Chile,
Peru,
Zaire, and
Zambia.
The copper price has quintupled from the 60-year low in 1999, rising from
US$0.60 per
pound (
US$1.32/
kg) in June 1999 to US$3.75 per
pound (
US$8.27/
kg) in May 2006, where it dropped to
US$2.40 (
US$5.29/
kg) in February 2007 then rebounded to
US$3.50 (
US$7.71/
kg =
£3.89 =
€5.00) in April 2007.
The Earth has an estimated 61 years of copper reserves remaining. Environmental analyst,
Lester Brown, however, has suggested copper might run out within 25 years based on a reasonable extrapolation of 2% growth per year.
Copper has been in use at least 10,000 years, but more than 95 percent of all copper ever mined and smelted has been extracted since 1900. And as India and China race to catch up with the West, copper supplies are getting tight. Copper is among the most important industrial metals. Like fossil fuels, copper is a finite resource.
Peak copper is the point in time at which the maximum global
copper production rate is reached, according to
Hubbert peak theory, the rate of production enters its terminal decline.
Methods
Applications
The purity of copper is expressed as 4N for 99.99% pure or 7N for 99.99999% pure. The numeral gives the number of nines after the decimal point when expressed as a decimal (e.g. 4N means 0.9999, or 99.99%). Copper is often too soft for its applications, so it is incorporated in numerous
alloys. For example,
brass is a copper-zinc alloy , and
bronze is a copper-tin alloy.
It is used extensively, in products such as:
Assorted copper fittings.
- used extensively in refrigeration and air conditioning equipment because of its ease of fabrication and soldering.
Electronics
Architecture / Industry
Household products
Coinage
- As a component of coins, often as cupronickel alloy.
- Coins in the following countries all contain copper: European Union (Euro), United States, United Kingdom (sterling), Australia and New Zealand.
- U.S. Nickels are 75.0% copper by weight and only 25.0% nickel.
Biomedical applications
Chemical applications
Other
- Musical instruments, especially brass instruments and cymbals.
- Class D Fire Extinguisher, used in powder form to extinguish lithium fires by covering the burning metal and performing similar to a heat sink.
- Textile fibers to create antimicrobial protective fabrics.
- Small arms ammunition commonly uses copper as a jacketing material around the bullet core.
- Copper is also commonly used as a case material, in the form of brass.
- Copper is used as a liner in shaped-charge armour-piercing warheads.
- Copper is frequently used in electroplating with Zinc and other metals.
- Copper/Chlorine ions are injected into seawater systems as a biocide to prevent marine growth within the seawater pumping system.
Compounds
Common
oxidation states of copper include the less stable copper(I) state, Cu
+; and the more stable copper(II) state, Cu
2+, which forms blue or blue-green salts and solutions. Under unusual conditions, a 3+ state and even an extremely rare 4+ state can be obtained. Using old nomenclature for the naming of salts, copper(I) is called
cuprous, and copper(II) is
cupric. In
oxidation copper is mildly
basic.
Copper(II) carbonate is green from which arises the unique appearance of copper-clad roofs or domes on some buildings.
Copper(II) sulfate forms a blue crystalline penta
hydrate which is perhaps the most familiar copper compound in the laboratory. It is used as a
fungicide, known as Bordeaux mixture.
Tests for copper(II) ion
Ionic equation:
Cu2+(aq) + 2OH−(aq) → Cu(OH)2(s)
The full equation shows that the reaction is due to hydroxide ions deprotonating the hexaaquacopper (II) complex:
[Cu(H2O)6]2+(aq) + 2 OH−(aq) → Cu(H2O)4(OH)2(s) + 2 H2O (l)
Adding
ammonium hydroxide (aqueous ammonia) causes the same precipitate to form. It then dissolves upon adding excess ammonia, to form a deep blue ammonia complex, tetraamminecopper(II).
Ionic equation:
Cu(H2O)4(OH)2(s) + 4 NH3(aq) → [Cu(H2O)2(NH3)4]2+(aq) + 2H2O(l) + 2 OH−(aq)
A more delicate test than ammonia is
potassium ferrocyanide, which gives a brown precipitate with copper salts.
Biological role
Rich sources of copper include oysters, beef or lamb liver, Brazil nuts, blackstrap molasses, cocoa, and black pepper. Good sources include lobster, nuts and sunflower seeds, green olives, avocados and wheat bran.
Copper is essential in all plants and animals. Copper is carried mostly in the bloodstream on a
plasma protein called
ceruloplasmin. When copper is first absorbed in the gut it is transported to the
liver bound to
albumin. Copper is found in a variety of
enzymes, including the copper centers of
cytochrome c oxidase and the enzyme
superoxide dismutase (containing copper and zinc). In addition to its enzymatic roles, copper is used for biological electron transport. The blue copper proteins that participate in electron transport include
azurin and
plastocyanin. The name "blue copper" comes from their intense blue color arising from a ligand-to-metal charge transfer (LMCT) absorption band around 600 nm.
It is believed that
zinc and copper compete for absorption in the digestive tract so that a diet that is excessive in one of these minerals may result in a deficiency in the other. The
RDA for copper in normal healthy adults is 0.9
mg/day. On the other hand, professional research on the subject recommends 3.0
mg/day. Because of its role in facilitating iron uptake,
copper deficiency can often produce
anemia-like symptoms. In humans, the symptoms of
Wilson's disease are caused by an accumulation of copper in body tissues.
Chronic copper depletion leads to abnormalities in metabolism of fats, high triglycerides, non-alcoholic steatohepatitis (NASH), fatty liver disease and poor melanin and dopamine synthesis causing depression and sunburn. Food rich in copper should be eaten away from any milk or egg proteins as they block absorption.
Toxicity
Toxicity can occur from eating acid food that had been cooked in Copper cookware. Cirrhosis of the liver in children (Indian Childhood Cirrhosis) has been linked to boiling milk in copper cookware. The Merck Manual states that recent studies suggest that a genetic defect is associated with this cirrhosis, but this should not be regarded as an endorsement of the practice since other toxicity besides cirrhosis can occur as in adults.
The suggested safe level of copper in
drinking water for humans varies depending on the source, but tends to be pegged at 0.15 to 0.20 mg/L. The
DRI Tolerable Upper Intake Level for adults of dietary copper from all sources is 10 mg/day
. In toxicity, copper can inhibit the
enzyme dihydrophil hydratase, an enzyme involved in
haemopoiesis.
Symptoms of copper
poisoning are very similar to those produced by
arsenic. Fatal cases are generally terminated by convulsions, palsy, and insensibility.
In cases of suspected copper poisoning,
Ovalbumin is to be administered in either of its forms which can be most readily obtained, as milk or
whites of eggs. Vinegar should not be given. The inflammatory symptoms are to be treated on general principles, and so are the nervous.
A significant portion of the toxicity of copper comes from its ability to accept and donate single electrons as it changes oxidation state. This catalyzes the production of very reactive radical ions such as
hydroxyl radical in a manner similar to
Fenton chemistry. This catalytic activity of copper is used by the enzymes that it is associated with and is thus only toxic when unsequestered and unmediated.
This increase in unmediated reactive radicals is generally termed
oxidative stress and is an active area of research in a variety of diseases where copper may play an important but more subtle role than in acute toxicity.
A
Kayser-Fleischer ring. Copper deposits are found in the iris. This is an indication that the body is not metabolizing copper properly.
An inherited condition called
Wilson's disease causes the body to retain copper, since it is not excreted by the
liver into the
bile. This disease, if untreated, can lead to
brain and
liver damage. In addition, studies have found that people with mental illnesses such as
schizophrenia had heightened levels of copper in their systems. However it is unknown at this stage whether the copper contributes to the mental illness, whether the body attempts to store more copper in response to the illness, or whether the high levels of copper are the result of the mental illness.
Too much copper in water has also been found to damage marine life. The observed effect of these higher concentrations on fish and other creatures is damage to gills, liver, kidneys, and the nervous system. It also interferes with the sense of smell in fish, thus preventing them from choosing good mates or finding their way to mating areas.
Miscellaneous hazards
The metal, when powdered, is a
fire hazard. At concentrations higher than 1 mg/L, copper can stain clothes and items washed in water.
See also